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1. Introduction
Tham, Velez-Pareja and Kolari (2010) derived the formula for the cost of equity

when the discount rate for the tax shields, TS, is the levered cost of equity and showed that
the formula works for perpetuities and finite cash flows. This formula was later used by
Kolari and Velez-Pareja, (2010) where they show that with this framework, an optimal

capital structure for perpetuities without growth is found.

This paper shows how to find the optimal leverage for finite cash flows in two
cases: with a unique and constant leverage and with varying leverage for each period; in
addition, a general formula for perpetuities with constant growth is presented. The paper
also contains simple numerical examples to illustrate the procedure. Each case tests for
consistency. In both cases the discount rate for the tax shields is the cost of levered equity,
Ke as proposed in Tham, Velez-Pareja, and Kolari (2010) and Kolari and Velez-Pareja,
(2010). The formula for Ke that will be extensively used in this work is

(Ku, — Kd,).D,_4

Ke, = P = Ku, + 1
e =Y, Uy VU,_, - D, , (1

In the previous formula y; stands for the discount rate of the tax shield, Ku;
corresponds to the unlevered cost of equity, D¢ equals the debt level, and the value of the
unlevered company is denoted by VU,.;. Note that the sub-indexes “t” and “t-1” are used to
denote two successive periods of time.

2. The case of finite periods and constant leverage
In this case the procedure maximizes the levered value with a period-to-period

constant leverage subject to the restriction that its value must be a number between 0 and 1.

Thus, the optimizing model is

Max VL

Subject to

0<D%<1

VL is levered value and D% is the constant leverage

The model is constructed assuming some input variables such as corporate tax rate
T, cost of debt, Kd;, unlevered cost of equity, Ku;, constant leverage, D% and free cash

flow, FCF;. Table 1, presented next, depicts the initial values for those variables; as said,
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only D% is a changing variable in the model. Other input variables are constant (for the

sake of exposition clarity, input variables are shown in shaded cells).

Table 1. Input Data

Year 1 2 3 4
T 35% 35% 35% 35%
Kd 11.00% | 11.00% | 11.00% | 11.00%
Ku 15.00% | 15.00% | 15.00% | 15.00%
D% | 50.0000%
FCF 17.00 20.00 22.00 25.00

The model makes extensive use of the basic cash flow and value equilibrium

equations for any period t, posed by Modigliani and Miller (1958) as follows:

CCF, = FCF#+ TS, = CFD, + CFE, 2)

Where CCF is capital cash flow, FCF is free cash flow, TS is tax shields, CFD is
cash flow to debt and CFE is cash flow to equity.

VLt = VUt + VTSt = Et + Dt (3)

Equations (2) and (3) are used to test consistency, because compliance with them
leads to a perfect matching among different methods of valuation. Recall that all valuation
methods that use discounted cash flows have to provide the same answer with no rounding
errors. From the input data intermediate and temporary results are calculated. These are:
debt D at end of period, debt payment as D; — Dy, interest charges calculated as Dy.;.Kd;,
tax shields TS as D¢,.Kd..T, cash flow to debt, CFD;, as the sum of debt payment plus
interest charges, cash flow to equity solving CFE; from (2), firm unlevered value VU as the
present value of FCF at Ku, Ke according to (1), VTS as the present value of TS at Ke, and
the unlevered value of equity, as VL - D - VTS. These values are depicted in Table 2. The
calculation of values with the different methods below is temporary until circularity is
solved and the optimizing procedure is applied.

In this case we find two stages where circularity appears: one is defining debt, D
which is needed to define CFD, TS and CFE. The second stage is defining discount rates
for CCF and FCF as in calculating value with WACC and FCF. Hence, the first action to be

done is enabling the iteration feature in the spreadsheet.



Table 2. Intermediate and temporary values

Year 0 1 2 3 4
VU =PV(FCL a Ku) 58.66 50.46 38.03 21.74
Debt D at end of period 30.50 26.04 19.48 11.05 -
Debt payment 4.46 6.56 8.43 11.05

Interest charges

3.36 2.86 2.14 1.22

Tax shields TS

1.17 1.00 0.75 0.43

CFD

7.82 9.43 10.58 12.26

CFE =FCF - CFD + TS

10.36 11.58 12.17 13.16

Ke = Ku + (Ku-Kd)D/(VU- D)’

19.33% | 19.27% | 19.20% | 19.13%

VTS 2.34 1.62 0.93 0.36

E- VTS= VL-D-VTS 28.16 24.42 18.55 10.69

When debt is known, methods such as the Adjusted Present Value, APV, do not

present circularity. In this case it does because debt is not known and TS depends on debt.

The first method is the Adjusted Present Value, APV. In this case, the value of TS is

calculated with Ke and VL is a temporary value because TS depends on D and D depends

on VL.

Table 3a. Method 1: APV. Temporary Values

Year 0

1 2 3 4

FCF

17.00| 20.00| 22.00| 25.00

PV(FCF atKu) | 58.66

50.46| 38.03| 21.74

PV(TS at Ke) 2.34

1.62 0.93 0.36

Total value, VL | 61.01

52.08| 38.96| 22.10

Debt, D 30.50

26.04| 19.48| 11.05

There is circularity between tables 2 and 3. Using Solver we optimize on D% and

obtain D%y = 75,2587%.

" In the tables that follow time sub indexes are eliminated to make it clear the reading. It is understood
that TS, debt and equity values (and D% and E%) are situated in the previous period.
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Exhibit 1. Dialog box from Solver when the constant leverage optimizing model is
introduced

Solver, Parameters [5__<|

Set Target Cell: Salve
Equal Ta: ®iMax  Omn O valueof: |0 | Close

By Changing Cells:

|$H$1 Guess

Subject to the Constrainks; o

o B

Options
$HEL <=1 #dd
tHEL ==10
Reset All
Help
Table 3b. Optimal Value with APV
Year 0 1 2 3 4
FCF 17.00| 20.00| 22.00| 25.00

PV(FCF atKu) | 58.66| 50.46| 38.03| 21.74

PV(TS at Ke) 3.03 2.16 1.27 0.50

Total value, VL | 61.70| 52.62| 39.31| 22.24

Debt, D 46.43| 39.60| 29.58| 16.74

The second method calculates the value of levered equity and V* is the sum of debt

and equity. This method is depicted in tables 4 and 5.



Table 4. Intermediate and Temporary Values for Valuing E
Year 1 2 3 4

VU =PV(FCL a Ku) 58.66| 50.46| 38.03| 21.74

Debt D at end of period 38.29| 31.16| 22.27| 12.07 -
Debt payment 7.13 8.89| 10.20| 12.07
Interest charges 4.21 3.43 245 1.33
Tax shields TS 1.47 1.20 0.86 0.46
CFD 11.34| 1231 12.65| 13.40
CFE =FCF - CFD + TS 7.13 8.89| 10.20| 12.07
E- VIS= VL-D-VTS 2037 1931] 1576| 9.67

Table Sa. Method 2: Market Equity Value. Temporary Value (1)

Year 0 1 2 3 4
CFE 7,13 8,89 10,20 12,07
(1) Market equity value PV(CFE at Ke) | 38,29 31,16 22,27 12,07 -
(2) Value of debt 38,29 31,16 22,27 12,07
(3) Ke =Ku + (Ku-Kd).D/(VU - D)
(4)VL=E+D 76,58 62,32 44,54 24,14

We calculate E with an initial Ke = 0 in order to avoid a division by zero. Calculating Ke

we have

Table Sb. Method 2: Market Equity Value. Temporary Value (2)

Year 0 1 2 3 4

CFE 10.36 11.58 12.17 13.16
(1) Market equity value PV(CFE at Ke) | 30.50 26.04 19.48 11.05 -
(2) Value of debt 30.50 26.04 19.48 11.05
(3) Ke =Ku + (Ku-Kd).D/(VU - D) 19.33%| 19.27% | 19.20%| 19.13%
(4)VL=E+D 61.01 52.08 38.96 22.10

As in method 1, table 4 depends on table 5. When Solver is used to find optimal D% we

find D% = 75,2587% and values are




Table Sc. Method 2: Market Equity Value. Optimal Value

Year 0 1 2 3 4
CFE 6.85 7.15 7.04 7.06
(1) Market equity value PV(CFE at Ke) 15.26 13.02 972 5.50 -
(2) Value of debt 46.43| 39.60| 29.58| 16.74
(3) Ke =Ku + (Ku-Kd).D/(VU - D) 30.18%| 29.58%| 29.00%| 28.39%
(4) VL=E+D 61.70| 52.62| 39.31| 2224

Using the CCF and the weighted average cost of capital for the CCF, WACC®“",
levered value is obtained. Tham and Velez-Pareja (2004) present the general formulation

for WACC®*F as

WACCE " = Ku-(Kug-y,).VTS;_1/VLy_4 (4a)
When vy, the discount rate for TS is Ke, equation (4a) becomes
WACCEF = Ku-(Kug-Ke).VTS,_1/VL;_q (4b)

Valuating CCF at WACC®“" is the third method to value the cash flows. This is
depicted in Tables 6 and 7.



Table 6. Intermediate and temporary values

Year 0 1 2 3 4

VU =PV(FCL a Ku) 58.66| 50.46| 38.03| 21.74

Debt D at end of period 4423| 34.88| 2421| 1275 -
Debt payment 935| 10.67| 11.47| 12.75
Interest charges 4.87 3.84 2.66 1.40
Tax shields TS 1.70 1.34 0.93 0.49
CFD 1422 1451 14.13| 14.15
CFE =FCF - CFD + TS 4.49 6.83 8.80| 11.34
Ke =Ku + (Ku-Kd)D-1/(VU¢; - De.1) 27.26%| 23.95%| 22.01%| 20.67%
VTS 2.89 1.97 1.10 0.41

VU-D 14.43| 15.58] 13.82 8.99

Table 7a. Method 3: CCF and WACC®“*. Temporary Values (1).

Year 0 1 2 3 4
Capital Cash Flow (CCF) = CFD + CFE 18.70| 21.34| 22.93| 2549
WACC" = Ku-(Ku-Ke).VTS/VL
PV(CCF)=VL 88.47 69.77| 4842 25.49

Previous table is a temporary one because there is circularity between WAC

CCF
C

and VL. The temporary VL is calculated with a WACC" of zero. Introducing WACC®,

we obtain,

Table 7b. Method 3: CCF and WACC®“* Temporary value (2).

Year 0 1 2 3 4
Capital Cash Flow (CCF) = CFD + CFE 18.17] 21.00| 22.75| 25.43
WACCCF = Ku-(Ku-Ke).VTS/VL 15.17%| 15.13%| 15.10% | 15.07%
PV(CCF) = VL 61.01| 52.08| 38.96| 22.10

Optimizing on D% we find D% = 75,2587% and values are
Table 7c. Method 3: CCF and WACC®*. Optimal Value.

Year 0 1 2 3 4
Capital Cash Flow (CCF) = CFD + CFE 18.79| 21.52| 23.14| 25.64
WACC = Ku-(Ku-Ke).VTS/VL 15.75% | 15.60% | 15.45%| 15.30%
PV(CCF)=VL 61.70| 52.62| 39.31 22.24




The popular textbook formula for WACC for the FCF is the fourth method. As in

the case of CCF, there is circularity because the calculation of D% depends on VL.

Table 8a. Method 4: Traditional Textbook WACC. Temporary Values (1).

Year 0 1 2 3 4
FCF 17.00 20.00 22.00 25.00
(1) V" at t=PV(FCF at WACC) 84.00 67.00 47.00 25.00
Contribution of debt to WACC
(2) D% 50.00%| 50.00% | 50.00% | 50.00%
(3) Kd(1-T) 7.15% 7.15% 7.15% 7.15%
(4) Contribution KdD%(1-T) 3.58% 3.58% 3.58% 3.58%
(4a) Debt 42.00 33.50 23.50 12.50
Contribution of equity to WACC
(5) E%=1-D% 50.00%| 50.00%| 50.00% | 50.00%
(6) Ke = Ku + (Ku-Kd).D/(VU - D) 25.08% | 22.90%| 21.47%| 20.41%
(7) Contribution Ke.E% to WACC 12.54% | 11.45%| 10.73%| 10.21%

(8) WACC = Ke.E% + Kd.(1-T).D%

VL is a temporary value because WACC'™" has not been calculated because of

circularity. When we introduce WACC™¥, we find

Table 8b. Method 4: Traditional Textbook WACC. TemporaryValue (2).

Year 0 1 2 3 4
FCF 17.00 20.00 22.00 25.00
(1) V" at =PV(FCF at WACC) 61.01 52.08 38.96 22.10
Contribution of debt to WACC
(2) D% 50.00%| 50.00%| 50.00%| 50.00%
(3) Kd(1-T) 7.15% 7.15% 7.15% 7.15%
(4) Contribution KdD%(1-T) 3.58% 3.58% 3.58% 3.58%
(4a) Debt 3050 26.04 19.48 11.05
Contribution of equity to WACC
(5) E%=1-D% 50.00%| 50.00%| 50.00%| 50.00%
(6) Ke = Ku + (Ku-Kd).D/(VU - D) 19.33% | 19.27%| 19.20%| 19.13%
(7) Contribution Ke.E% to WACC 9.67% 9.63% 9.60% 9.57%
(8) WACC =Ke.E% + Kd.(1-T).D% 13.24% | 13.21%| 13.18% | 13.14%

Optimizing on D% we find D%op = 75,2587% and values are




Table 8c. Method 4: Traditional Textbook WACC. Optimal Value.

Year 0 1 2 3 4
FCF 17.00 20.00 22.00 25.00
(1) V*© at t=PV(FCF at WACC) 61.70 52.62 39.31 22.24
Contribution of debt to WACC
(2) D% 75.26% | 75.26% | 75.26%| 75.26%
(3) Kd(1-T) 7.15% 7.15% 7.15% 7.15%
(4) Contribution KdD%(1-T) 5.38% 5.38% 5.38% 5.38%
(4a) Debt 46.43 39.60 29.58 16.74
Contribution of equity to WACC
(5) E%=1-D% 24.74% | 24.74% | 24.74% | 24.74%
(6) Ke = Ku + (Ku-Kd).D/(VU - D) 30.18% | 29.59% | 29.00% | 28.39%
(7) Contribution Ke.E% to WACC 7.47% 7.32% 7.17% 7.02%
(8) WACC =Ke.E% + Kd.(1-T).D% 12.85% | 12.70% | 12.56% | 12.40%

Tham and Velez-Pareja (2004) present the general formulation for WACC'" as

WACC" = Ku- TS, /VLi_y - (Kug-y,).VTS,_1/VLi_4 (5a)
When v is Ke then (5a) becomes
WACCFF = Kug-TS,/VL_;1 - (Ku-Ke).VTS,_1/VL,_; (5b)
Table 9a. Method 5: VL with WACC"“* from (5b). Temporary Values.
Year 0 1 2 3 4
FCF 17.00| 20.00| 22.00| 25.00
(1) Value VL 84.00| 67.00| 47.00| 25.00
(2) WACC'*" =Ku - TS/VL - (Ku-Ke).VTS/VL
In this stage we have
Table 10. Debt and Cash Flows. Temporary Values (1).
Year 0 1 2 3 4
Debt D at end of period 42.00 26.04 19.48 11.05 -
Debt payment 15.96 6.56 8.43 11.05
Interest charges 4.62 2.86 2.14 1.22
Tax savings TS 1.62 1.00 0.75 0.43
VP(FCL a Ku) 58.66 50.46 38.03 21.74
Ke = Ku + (Ku-Kd)D.i/(Vun,; - D) 25.08%| 19.27%| 19.20%| 19.13%
VTS 2.59 1.62 0.93 0.36

Introducing WACC™" with these data we have
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Table 10a. Method 5: VL with WACC " from (5b) Temporary Values (2).

Year 0 1 2 3 4
FCL 17.00|  20.00| 22.00| 25.00
(1) Value 61.01 52.08| 38.96| 22.10
(2) WACC =Ku - TS/V.; - (Ku-
Ke)VTSt-1/VL, 13.24% | 13.21%)| 13.18%| 13.14%
Now we optimize on D% and D%, = 75,2587%.
Table 10b. Method 5: VL with WACC"" from (5b). Optimal Value.
Year 0 1 2 3 4
FOL 17.00] 20.00] 22.00] 25.00
(1) Value 61.70| 52.62| 39.31| 2224
(2) WACC =Ku - TS/V..; - (Ku- 12.85% | 12.70%| 12.56%| 12.40%

Ke)VTSt-1/ VL,

As can be seen, all methods yield the same and identical value. This is, they are

consistent. Note that given a temporary leverage of 50%, all methods yield the same value,

this is, 61.01. Now, using Excel Solver, the objective cell might be any of the values (in

this case, the temporary one, 61.01 obtained with the APV) and set Solver to maximize that

value, changing the cell where D% is written and subject to 0 < D% < 1. The solution by

Solver is D% = 75.2587%. With this optimal D% the previous tables show the optimal

values. Using one way tables one can show the behavior of value, unlevered value and

VTS. In that table we observe the maximum value at D% = 75.2587%.
Table 11. Behavior of VL and VTS depending on D%

D% VL |VTS |Vun |E-V™
0% |58.7 |- 58.7 | 58.7
10%59.2 0.5 58.7 | 527
20%[59.6 |1.0 |58.7 | 46.7
30%60.1 |1.4 |58.7 | 40.6
40% (60.6 |1.9 [58.7 | 344
50%(61.0 |2.3 58.7 | 282
60% |61.4 |2.7 |58.7 | 21.8

75.2587%|61.7 |3.0 |58.7 12.2
80%|61.6 [3.0 |58.7 9.4
90% (609 2.2 |58.7 3.9

99.98% 58.7 0.0 |58.7 0.0

11




This behavior is depicted in Exhibit 2.

Exhibit 2. Optimal capital structure
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When the leverage is allowed to vary from year to year, the procedure is similar,
except that when optimizing the procedure is subject to several variables (several D%, one
for each year).

Next the reader will find the tables for a non constant leverage and maximum
value. Obviously, in this case it is not possible to graph values against leverage. The inputs
are identical to table 1, except that D% is variable from year 1 to year 4. In this case the
procedure maximizes the levered value changing variable leverage subject to the restriction
that leverage should be a value between 0 and 1.

The optimizing model is

Max VL

Subject to

0<D%<1

VL is levered value and D% is period-to-period leverage.

Using Solver and introducing the previous mathematical model, the optimal values

of D% are found.
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Exhibit 3. Dialog

Solver Parameters

Set Target Cell; E‘i:: Solve
Equal To: i Max ()Mo () Yalue of: I—ID
B Changing Cells;
|$B$E:$E$E Guess |
Subject bo the Constraints: Cptions
$E§6:$E56 <= 1 add
$B46:$E46 ==

Reset All

Help

box from Solver when the optimizing model is introduced

In this case we do not show the intermediate temporary tables. Next tables show the

final result.

Table 12. Optimal values for capital structure, variable D%

Year 0 1 2 3 4
D% 72.983% | 75.600% | 78.566% | 82.324%
FCF 17.00 20.00 22.00 25.00
Debt D at end of period 45.04 39.79 30.90 18.32
Debt payment 5.25 8.90 12.57 18.32
Interest charges 4.95 4.38 3.40 2.02
Tax shields TS 1.73 1.53 1.19 0.71
CFD 10.20 13.28 15.97 20.34
CFE =FCF - CFD + TS 8.53 8.26 7.22 5.37
PV(FCL a Ku) 58.66 50.46 38.03 21.74
Ke = Ku + (Ku-Kd).D/(VU - D) 28.22% 29.92% 32.31%| 36.45%
VTS 3.05 2.17 1.29 0.52

Next tables show the optimal values obtained after using Solver for variable D%.

Table 19 depicts levered value, VL calculated with CCF and WACC®.
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Table 13. Method 1: CCF and WACC®“" with optimal variable D%

Year 0 1 2 3 4
Capital Cash Flow (CCF) 18.73 21.53 23.19 25.71
WACC" = Ku-(Ku-Ke).VTS/VL 15.65%| 15.62%| 15.57%]| 15.50%
PV(CCF) = VL 61.71] 52.64| 3932| 2226

APV is the most reliable method to calculate the value of a firm. It is depicted in

table 20.

Table 14. Method 2: APV with optimal variable D%

Year 0 1 2 3 4
FCF 17.00| 20.00| 22.00|25.00
Tax shields TS 1.73| 1.53] 1.19] 0.71
PV(FCF at Ku) | 58 66| 50.46| 38.03| 21.74
PV(TS atKe) 3.05| 2.17| 129 0.2
Total value VL | 61.71| 52.64| 39.32| 22.26

Method 3 is depicted in Table 15. It shows the textbook formula for WACC™" and

the levered value VL.

Table 15. Method 3: Textbook formula for WACC"" with optimal variable D%

Year 0 1 2 3 4
FCF 17.00 20.00 22.00 25.00
(1) VL at t =PV (FCF at WACC) 61.71 52.64 39.32 22.26
Contribution of debt to WACC
(2) D% 72.98% | 75.60% | 78.57% | 82.32%
(3) Kd.(1-T) 7.15% | 7.15%| T7.15%| 7.15%
(4) Contribution Kd.D%.(1-T) 522%| 5.41%| 5.62%| 5.89%
Contribution of equity to WACC
(5) E% = 1-D%
(6) Ke = Ku + (Ku-Kd).D/(VU - D) 27.02% | 24.40% | 21.43% | 17.68%
(7) Contribution Ke.E% to WACC 28.22% | 29.92% | 32.31%| 36.45%
(8) WACC =Ke.E% + Kd.(1-T).D% 7.62% | 7.30%| 6.93%| 6.44%

14




Next table depicts the calculation of market levered equity with optimal leverage,

D%. Table 16 includes the calculation of VL using equation (3).

Table 16. Method 4: Market equity value, with optimal variable D%

Year 0 1 2 3 4
CFE=FCF -CFD + TS 8.47 8.19 7.16 5.32
(1) Market equity value PV(CFE at Ke) |16.67 12.84 8.43 3.93 -
(2) Value of debt 45.04| 39.79 30.90| 18.32
(3) Ke =Ku + (Ku-Kd)D/(V"" - D) 28.22% | 29.92% | 32.31%| 36.45%
(4) VL 61.71| 52.64 39.32| 22.26

Finally, method 5 in table 17 depicts the calculation of value with the general
WACCH™ when Ke is the discount rate for TS.

Table 17. Method 5: V" with WACC"" from (5b) with optimal variable D%

Year 0 1 2 3 4
FCL 17.00 20.00 22.00 25.00
(1) VL 61.71 52.64 39.32 22.26
(2) WACC =
Ku - TS/VL - (Ku-Ke).VTS/VL 12.84% | 12.70%| 12.54%| 12.33%

From an Optimization Theory point of view, the restrictions present in a problem
play the role of reducing the space of feasible solutions. Hence, that space is greater (or in
extremely special cases, equal) in the variable leverage problem than in the constant one,
which implies that in almost any case the optimized VL with variable leverage will yield
better solutions than the obtained in the constant case. This is due to the fact that the space
of feasible solutions in the constant case is always a sub-set of the corresponding space in
the variable leverage case. Hence, the difference between the solution with constant
leverage and variable leverage is as expected.

On the other hand, the analytical formulation for constant leverage is almost
intractable. We consider that in the real world what happens is a variable leverage instead
of a constant one, although that is a managerial decision and the constant leverage could be

eventually, achieved.
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3. A General Analytical Solution for Period-to-Period Variable Leverage
Next, closed-form analytical expressions for the optimal capital structure calculation

in two different scenarios are presented. The first one corresponds to the finite period case
and the detailed derivation of the formula can be found in Appendix A.

The problem to be solved involves finding a set of optimal levels of debt for every
period that, when put together, maximize the value of the levered firm. In principle, this
objective can be achieved by treating the level of debt in every single period as an unknown
variable, writing down a formula for the company levered value as a function of those
unknowns, finding de derivatives of that function with respect to the debt level in every
period, equaling to zero every one of those derivatives, constructing a system with the
equations obtained, an solving the system for the optimal debt in every period. Nonetheless,
this process is extremely cumbersome and impractical, due not only to the need of solving
the equation system, but also to the fact that the optimal debt level in an arbitrary period “t”
is a function of the debt levels in all posterior periods; this, in turn, implies that the
derivatives get more complex as the number of periods increases.

Fortunately, the last mentioned fact provides a way to find an elegant solution to the
problem. First, observe that the optimal debt level in the last period “n-1" does not depend
on the debt of any previous period (it is assumed that the debt level in period “n” is zero
and the outstanding value in period n-1 is paid with the concomitant reduction in the CFE
in period “n”); in consequence, the optimal debt level for that period can be found in an
independent way. Accordingly, this optimization problem involves a single variable of
choice and can be solved in a relatively straightforward way. Next, and knowing that the
capital structure of period “n-1" has been optimized and correspondingly, that the value of
the levered company has been maximized in that period, it is possible to find using that
results (the optimal debt level for period “n-1"" can be treated now as a constant) the optimal
debt level for the period “n-2” in an analogous manner. This procedure can be repeated
until period zero is reached, thus obtaining the optimal set of debt for every period that
maximize the present value of the levered company.

In consequence, the result of this analysis (see Appendix A for details, as mentioned
above) is a recursive expression that should be applied backwards in time (this is, starting

from the next to last period “n-1" and using the results obtained to extend the process until
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period zero is reached) which, in addition, the procedure does not suffer of any circularity

issues. The mentioned expression is shown next:

(6)

T (1+Ku)'|T VU_;.(1+Ku).Kd,. T

(1 +Kdy)

VU, (1 + Kuy) (1+Kd,) VTS,. (Ku, — Kd,)
Dopri-1 = 41— 1

This formula (6) is the same (A34) derived in Appendix A. Observe that the optimal
debt level in “t-1” depends only on values in “t”, which are all known. The only required
value corresponding at period “t-1” is the unlevered value of the company which, by
definition, does not depend on the actual or posterior debt levels and hence, can be found as
the present value of the future FCFs discounted at their respective Ku.

Using (6) with the example from table 12 we have

Table 18a Calculation of Doy and VL

Year 0 1 2 3 4

Ku 15.00% 15.00% 15.00% 15.00%
Kd 11.00% 11.00% 11.00% 11.00%
] 28.22% 29.92% 32.31% 36.45%
Ke 28.22% 29.92% 32.31% 36.45%
T 35.00% 35.00% 35.00% 35.00%
FCF 17.0000 20.0000 22.0000 25.0000
VU 58.6647 50.4644 38.0340 21.7391 0.0000
CFE 8.5342 8.2569 7.2180 5.3679
E 16.6724 12.8434 8.4286 3.9341 0.0000
TS 1.7340 1.5320 1.1895 0.7054
VTS 3.0463 2.1720 1.2897 0.5170 0.0000
Doy from (6) 45.0385 39.7930 30.8951 18.3221

VL=E+D 61.7109 52.6364 39.3237 22.2561 0.0000
APV =VU+ VTS 61.7109 52.6364 39.3237 22.2561 0.0000
D% = Do/ VL 72.9831% 75.5998% 78.5660% 82.3237%

VU-D 13.6261 10.6714 7.1389 3.4171

As can be seen the results are identical to the ones obtained using Solver. To

illustrate the calculation of Doy we show for t -1 = 0 the value of debt in table 24b using eq.

(6).
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Table 18b. Calculation of components of Eq. (6)

VU (1 + Kup)
(1 +Kdy) 60.77871247
(1 +Kdy)
(1 + Ku) 0.965217391
VTS;. (Ku; — Kd,)
VU, 1. (1 + Ku).Kdp. T 0.03344884
(6) 45.03854992

Now we illustrate the calculations for the two first periods of our example. Suppose
that we wish to optimize the optimal capital structure of a company which future FCFs

equal the first two years of the one shown in Table 1. The results, in this case will be:

Table 19. Application of formula (6)

Year 0 1 2
Ku 15.00% | 15.00%
Kd 11.00% | 11.00%
T 35.00% | 35.00%
FCF 17.00 20.00
TS 0.93 0.56
VTS 1.02 0.41 0.00
CFE =FCF -CFD+ TS 5.64 4.29
VU 2991 17.39 0.00
(1) Market equity value 6.65 3.14 0.00
(2) Value of debt 24.28 14.66 0.00
(3) Ke =Ku + (Ku-Kd).D/(VU-D) 32.25%| 36.45%
(4) VL 30.93 17.80 0.00

b _1739.(+015) (1+0.11) (0.00).(0.15-10.11) 1466
OPTLT T (1+011) )T |7 (40157 (17.39).(1 +0.15).(0.11).(035)|( ~

5 _(29.91).(1+0.15) | (1+0.11) ) (0.41).(0.15 — 0.11) a8
OPTO =" (1+011) | _(1+0.15)'[ "~ (29.91). (1 + 0.15).(0.11).(0.35) [ — “™

These results can be represented in a graphic as follows:
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Exhibit 4: VL, for two periods as function of debt level at t=0 and t=1
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Exhibit 5: VL, for two periods as function of debt level at t=0 and t=1

Firm Levered Value at t =0 (VL)
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Debt Value at t= 0 (D,)

Observe that formula (6) does not require any previous calculation of Ke, CFE or

equity value. In consequence, the optimal level of debt resulting from its application can be
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plugged directly into expression (7) to find the optimal leverage without carrying the

mentioned calculations (see Appendix A for details)

Di_1.[VU,_1.(1 + Kup) — Dy_y. (1 + Kd,)]

= 7
VUt—l' [vUt_l. (1 + Kut) - Dt—l' (1 + Kdt)] + (VUt—l - Dt—l)' (stt + Dt—l' Kdt. T) ( )

D%

Expression (7) is the same as (A40) in Appendix A and is used to graph VL as a

function of leverage (see Figures 3 - 4):

Exhibit 6: VL, for two periods as function of leverage at t=0 and t=1
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Exhibit 7: VL, for two periods as function of leverage at t=0 and t=1
Firm Levered Value at t =0 (VL)
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The results obtained by means of (7) are D%=82.3237% for t=1 and a leverage of
D%=78.5045% for t=0. It is crucial to note that the behavior observed in Exhibits 4 to 7 can
be depicted graphically because they were constructed assuming the existence of only two
periods. Thus, a similar procedure for a greater number of periods would require a higher-
dimensional space to be visualized; nevertheless this number does not restrict the existence
of an optimal capital structure and formula (6) still holds.

In order to complete the exposition, the case for optimal capital structure in
perpetuities with constant growth is now presented. The formula for finding the optimal

debt level is as follows (see Appendix B for details):

vy
_ (Ku, — g) (Kd, —g)| "2
Dopti-1 = VUt_l'—(Kdt et ll - [1 " Ru,—g) g)] ] €))

Formula (8) is the same as formula (B40) from Appendix B. The particular case of a

non-growing perpetuity corresponds to g=0 and (8) collapses to

Ku, Kd,1/2
Dopti-1 = VUi1- - Kd, Ku] 9
t

Formula (9) is the same formula (B41a) in Appendix B. Since in the mentioned case
VU, =FCF/Ku,, expression (B4la) can be presented in the following equivalent form
(which is the one derived by Tham et al, 2010) and can be found in Appendix B as (B41b):
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FCF,

Optt—-1 = _Kd .
t

o]

4. Concluding Remarks
This paper has shown the procedure to calculate value and optimal capital structure

assuming Ke as the discount rate for TS for finite cash flows. Several scenarios were
analyzed: constant leverage and variable leverage (D% different for each period), and
closed-form analytical solutions for a finite number of periods and perpetuities. Five
popular methods were used and all of them give the same identical answer.

Using an analytical formulation to calculate optimal debt, the differences in value
are negligible. In this particular case, the differences between constant and variable
leverage are very small: 0.009%; nonetheless, this paper does not claim that this difference
is a general behavior when using one or other approach, but it remains clear that the
variable leverage approach leads to equal or higher values of the levered company due to
the value of the flexibility of adapting the leverage every period as a function of the
expected future cash flows.

In addition, it was assumed that the cost of debt remains constant while changing
the debt level in a particular period in order to maximize it. Nonetheless, more work has to
be done in order to identify the behavior of Kd as a function of leverage. Consequently, our
formulation is open to include a variable Kd, although linked to leverage which will create
a circularity (observe that we are not referring to a Kd that is allowed to change from period
to period because the herein derived formulas account for that kind of flexibility; we refer
to the cost of debt in a particular period that could be allowed to change as a function of a
variation in leverage).
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Appendix A

Derivation of the general formula for the optimal capital structure when there are a
finite number of periods and y; = Ke;

We start from the following basic tenets of finance:

VLe_; = Ee_y + Dy_y = VU_; + VTS, (A1)

TS, = De_q.Kd,. T (A2)

VTS, = VTS,_;. (1 + ) — TS, (A3)

VTS, , = M (A4)
1+

And the expression for Ke as the discount rate for TS (See Tham, Velez-Pareja &

Kolari 2010):

(Ku; — Kdp). Dy,
Ke, = ¢y = K A5
e = Py ue + VU, — Dy, (A5)

The goal of this section is to find the value of Dy that maximizes the value of the
levered firm, VL. It is necessary to note that is much easier to find the optimum using the
absolute debt level Dy instead of the leverage D% = Dy / (E¢; + Dy) since the latter
yields more complex expressions. In consequence, the procedure consists of finding the
derivative of VL., with respect to Dy, equal it to zero, and solve the resulting equation
with Dy as the unknown variable to find the optimum.

In order to find the mentioned derivative the chain rule of differential calculus is
used due to the fact that the resulting expression will be a product of several factors, which
makes easier to solve the equations for the optimal values (although, as will be seen, there
is only one):

dVLe;  dVLe; dVTS._, dyq
dD,_, dVTS,, dy, dD,_,

(A6)

Since expressions for each of the factors on the right hand side (RHS) of (A6) are
needed, we proceed to find the third one in the first place by taking derivatives at both sides
of (A5) with respect to Dy.i:

d d
dy, dKu, (VUi — Dt_l)'dD—t_l [(Ku; — Kdy). D] — (Kug — Kdy). Dt‘l'dD—t_l (VUioq — Do)

= +
th—l th—l (VUt—l - Dt—l)z
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dye 4 (VUi-1 — De—q)- (Kue — Kdy) — (Kug — Kdp). Dy (=1)

dD¢—4 =0 (VUi—y — D)2

dy _ (VU;—y — Dy—y). (Kuy — Kdy) + (Ku — Kdy). Dy_y
dD¢q (VUi—1 — Di—y)?

dy _ (VUt—1 = Di—g + Dy—y). (Ku — Kdy)
dD¢q (VUi—y — Dy)?

g _ VU (Ku — Kd)
th—l (VUt—l - Dt—l)z

(A7)

Note that VU, and Ku, are treated as constants since they are, by definition,
independent of debt level. In contrast, Kd; may increase with leverage, a situation that
would demand an expression for the cost of debt as a function of Dy.;. nonetheless, in this
article Kd; is assumed for simplicity considerations to be independent of debt level. Thus,

taking the derivative of (A4) with respect to y;, we have that

aves,, 0+ -y (VTS + TS0 = (VTS 4 TS0, 505 (1 + )

dy 1+ ¢p)? (A8)
avrs,, d+ wt).% (VTS, + Dy_;.Kd,. T) — (VTS + D,_,.Kd,. T).% 1+ )
v, : CESTAE : (A9) = (A2) in (A8)
avts,., (I+W¥).Kd.T. dfq;—tl — (VTS; + Dy_1.Kd.. T). (1)
b T+ 97 (a10)
dD¢_q _ dy -
dy, <th_1) (A11)

(14 ). Kd,. T (VUi — Dy-y)® — (VTS; + D;_;.Kd.. T)
dVTS,_; _ - 2% VU, (Ku, — Kdp) t T Pe-1- Ble

dy, (1 +)?

(A12) = (A7), (A11) in (A10)

Observe that VTS; is also treated as a constant, which is of crucial importance; this
stems from the fact that it is a function of y; and values of y of further periods (if they
exist), but is independent of ;. Nevertheless, this is not true in the case of TS, since it
depends on Dy.; which, in turn, is related to y; via (AS).

Now we proceed to find the derivative of the firm’s levered value with respect to the

present Value of Tax Shield (VTS) using (A1):

dVLe;  dVUe;  dVTS.,
dVTS,.; dVTS,, dVTS,_,

(A13)
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Since the firm’s unlevered value is independent of VTS,

=0+1= (A14)

Putting the factors (A14), (A12) and (A7) together in (A6) and setting the resultant

derivative equal to zero, we have that

dVL,_,
dD¢ 4

2
(VUi_; — Dopr-1)
VU, (Ku; — Kdy)

1+ yp)? ?

f(1 + ). Kd,. T.

— (VTS + Dopr—s. Kd;. T)]

VUt—I' (Kut - Kdt)

= (D).
(VUeq — Dopreat)

=0

(A15)

2
(VUi_; — Dopr-1)
dVLt—l a VUt—l- (Kut - Kdt)

dD¢_4 T+ Y2 }

f(1 + ). Kd,. T. — (VTS + Dopr—1. Kd;. T)]

VUt—I' (Kut - Kdt)
2
(VU1 = Dopryt-1)

=0 (A16)
The solutions for the optimal debt level Doprt.; stemming from the first factor of

(A16) are:

) -
(VU1 — Dopr-1)
(1+ ). Kd,. T. V0o, (Ruy — Kd) |~ (VTS; + Dopr_1. Kdi. T)
i | —0
(14 yp)?
) -
(VU¢_1 — Doprye-1)
1 .Kd,.T. : — (VTS, + Dopri_1.Kdp. T
(1 + Wp).Kd; VU,_,. (Ku, — Kdy) (VTS; + Dopr—1-Kd,. T)
=0 (A17)

(Kug — Kdp). Dopr—1
VU_1 — Dopr,t-1

2
(VUt—1 B DOPT,t—l)
VUt—l' (Kut - Kdt)

1+ Ku, + ].Kdt. T. — (VTS; + Dopre1.Kd. T) = 0

(A18) = (A5) in (A17)

2
(VUi—; — Dopre-1)
VU,_,. (Ku, — Kdy)

(1 + Kuy). (VUt—l - DOPT,t—l) + (Kug — Kdp). Dopr,t-1
VU1 — Doprt-1

] .Kd,.T.

—

— (VTS; + Dopr_1.Kd. T) = 0
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VUt—l - DOPT,t—1
VU,_;. (Ku, — Kdp)

[(1 + Kup). (VUi_; — Dopre—1) + (Kup — Kdp). Dopr—1 | Kd. T. [

— (VTS; + Dopr_1.Kd. T) = 0
VUi_1 — Dopri-1
VUt—l' (Kut - Kdt)

(1 4 Kuy). (VUi—; — Dopr—1)-Kd. T. [

VUi_1 — Doprt-1
VU,_,. (Ku, — Kdp)

+ (Ku; — Kdy). Dopr_1- Kd. T. [ ] — (VTS; + Dopri_1.Kd. T) = 0

2
(14 Kuy). (VUi—y — Dopr—1) - Kdp. T
VU._;. (Ku, — Kd,)
=0

VUt—l - DOPT,t—1
VUi,

+ DOPT,t—l' Kdt T. [ ] - (VTSt + DOPT,t—l' Kdt T)

2
(1 4+ Kup).Kd. T. (VU;_; — Dopr—1)
VUt—l' (Kut - Kdt)

VU1 — Dopre—1
VUi

+ Dopr,e-1-Kd. T [ - 1] — VTS, =0

2
(1 + Kug).Kdy. T. (VU;_; = Dopre—1) VUi—1 — Doprt-1—VUi—4

+ Dopre-1-Kd¢. T. [ ] — VTS, =0

VUt—l' (Kut - Kdt) VUt—l
2
(1 +Kup).Kdi. T. (VUr—y = Dopre—1)”  D@pre—s-Kde T VTS, = 0
VUt—l' (Kut - Kdt) VUt—l t
2
(1 +Kup). (VUi—g = Dopre-1)”  Ddpre—s VTS —0
VU,_,. (Ku, — Kd,) VU, Kd.T
2
(1 +Kup). (VUi—y = Doprye-1)” 02 _ VU VTS, _
(Ku, — Kd,) OFT.t-1 Kd,. T
2 VU,_;. (Ku, — Kd,). VTS
(1 + Kuy). (VUi_; = Dopre—1)” — D3pr s (Kup — Kd) — ———— t L)
Kd,. T
VUt—l' (Kut - Kdt). VTSt
(1 + Kuy). (VUZ; — 2.VU;_1. Dopre—g + Ddpr—1) — Ddpri_s. (Ku, — Kd) — KA. T =0
-
VU,_;. (Ku, — Kd,). VTS,

—D@pr-1- (Kug — Kdy — 1 — Kuy) — 2. Dgpre—q. VUp_y. (1 + Kup) — KT
tl

+VUZ,.(1+Ku) =0

VUtz_l. (1 + Kut). Kdt. T - VUt—I' (Kut - Kdt). VTSt

_D%PT,t—l' (1 + Kdt) - 2. DOPT,t—l'VUt—l' (1 + Kut) +
Kd,. T

=0
VU,_;. [VU,_;. (1 + Kup). Kd,. T — (Ku, — Kd,). VTS,]
Kd,. T

D%PT,t—l' (1 + Kdt) - 2. DOPT,t—l'VUt—l' (1 + Kut) +

=0

(1+Kd,) VU, ;. (1 + Kup).Kd,. T — (Ku, — Kd,). VTS,
OPTE-1 Ty 2.Doprt-1-(1 + Kup) + Kd, T

=0 (A19)

This is a quadratic equation in Dopry. that can be solved by means of the general

formula:
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_(1+Kd)

A= A20
VU, (A20)
B =-2.(1+Ku,) (A21)
VUt—l' (1 + Kut). Kdt. T - (Kut - Kdt). VTSt
C= A22
Kd,. T ( )
—-B++VB2—-4.A.C
Dopri-1 = 2 A (A23)
2.(1+Ku) + |4.(1+Kup)? — 4. (1+Kd,) .VUt_1. (1 + Kuy).Kd;. T — (Ku, — Kd,). VTS,
D _ VU,_4 Kd,. T
OPTt-1 — 5 (1 + Kdt)
" VU,
(A24) = (A20),(A21) and (A22) in (A23)
(1+Ku) £ |(1 +Ku)? (1 +Kdp) .VUt_l. (1 + Kup).Kd,. T — (Ku, — Kd,). VTS,
D _ VU, Kd;.T
OPTt—-1 — (1 + Kdt)
VO,
(1+Ku) £ |(1 +Ku)? VUe_;.(1 + Kup). (1 + Kdy).Kd. T — (Ku, — Kd,). (1 + Kd,). VTS,
D _ VU,_;.Kd.. T
OPTt-1 1+ Kdp)
VU,
(A +Ku) + (1 +Ku)? — (1 + Kuy). (1 + Kdy) + K =Kdy). (4 + Kdy). VTS,
D _ VU,_;.Kd,.T
OPTt—-1 — (1 ¥ Kdt)

VU,

VUt_1 (Kut - Kdt). (1 + Kdt).VTSt
D =—— — |(1+Ku) £ [(1+Ku)?—(1+Ku).(1+K
OPTE1 ™ (1 + Kdyp) (1+Ku) £ J (1 +Kug? = (1 +Kup). (L +Kdo) + VUi 1. Kde. T
b _ VU (1 +Kuy) (1+Ku)? (1+Ku).(1+Kd) (Ku—Kdy).(1+ Kdy). VTS,
OPTL1 ™ (1 + Kdy) | (1 +Kup)? (1 + Kuy)? VUi_;. (1 + Kup)2.Kd,. T

VUt—l' (1 + Kut) 1 \]1 (1 + Kdt) (1 + Kdt) VTSt. (Kut - Kdt)

D 1= -
OPT.t-1 (1+Kdy) (1+Ku)  (1+Kup)VUpy. (1 + Kup).Kd. T

D _ VUt_]_. (1 + Kut) 1— (1 + Kdt) _ VTSt (Kut — Kdt) (Azs)
OPT,t-1 (1+Kdy - (1+Kuy)’ VU,_;.(1 + Ku,).Kd,. T

Equation (A25) has one root for a positive sign before the radical, and one for the
negative sign; thus, we need to identify which one is consistent from a financial point of

view:
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(A26)

DOPT,t—l _ (1 + Kut) 1 + 1 (1 + Kdt) 1 VTSt (Kut —_ Kdt)
VU, (A +Kd)') — (1+Kuy)’ VUi_;. (1 + Kup). Kd,. T

Kolari and Velez-Pareja (2010) show that VUt-1>Dt-1; otherwise, it would imply a

negative value for the unlevered equity. In consequence:

Doprt-1
‘ ! A27
VU, (A27)
(14 Kuy) (1+Kdy) VTS,. (Ku, — Kd,)
A1+ [1- J1- 1 A28) = (A26) in (A27
(A+Kd)"|" ~ (1 + Kuy) VU, (1 Kup Ko 1| S (A28) = (A26) in (A27)

1+ 1= w __ VTS (Kuy — Kdy) < (1 +Kd,)
- (1+Ku)'|" VU (1+Ku).Kd. T| ~ (1 + Kup)

(1 +Kd,) VTS,. (Ku, — Kd,) (1 +Kdy)

+ [1- 1= -

—J L ke | V0L G+ Ku) KdoT| < O + Ky (A29)
In addition, Ku; must be greater than Kd;, by definition:

(1+Kdy)

RS (A30)
(1 +Kd,) VTS,. (Ku, — Kd,) (1 +Kdy) B

—J "1+ Kup) [ TV LA+ K KdoT| “ ka1 <0 (A31) = (A30) and (A29)
(1 +Kd,) VTS,. (Ku, — Kd,)

—J C (1+Ku) [ T VU, (1 + Kup. Kd. T| ~ 0 (A32)

In order to yield real roots, the expression under the radical must be positive and,

consequently, (A32) holds only if the sign before the radical is negative:

VTS,. (Ku, — Kd,)
VU,_;.(1 +Ku,).Kd,.T

1 (1 + Kdy) 1 0 A33
T A +Ku) < (A33)

Hence, the formula for the optimal debt level in a specific period “t-1” is

b _ VU4 (1+Ku) 1 (1 +Kd,) X VTS,. (Ku, — Kd,) A34
OPTE1 ™ (1 +Kd) (1+Kuy)’ VU,_;.(1 + Ku,).Kd,. T (A34)
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And, finally, for the second factor of (A16) we have that

VUt—l' (Kut - Kdt) _
(VUt—l - Dt—l)2

VU,_;. (Ku, — Kd) = 0

The former equation yields no solutions since its left hand side (LHS) is
independent of the variable Dy;. Going back to (A34), the following analysis looks for the
conditions needed to obtain real roots from that equation; that is, under what conditions the

expression under the radical is equal or greater than zero:

(1+Kdy) VTS,. (Ku, — Kd,) >0

(1+Ku)' |” VU_..(1+Ku).Kd..T| =
(1 + Kdt) VTSt. (Kut - Kdt) < 1
(1+Ku)'|” VU_;. (1+Kup).Kd..T| =

VTS (Ku, — Kd,) < (1 + Kup)
VU, (1 + Kup).Kd.. T — (1 + Kdp)

__ VIS.(Ku—Kd) _ (1+Ku)
VU,_,.(1 + Kup).Kd.. T — (1 + Kdp)
_(+Ku) _ VTS, (Ku — Kd)

(1+Kdy) ~ VU,_,. (1 + Kup).Kd,. T

(1+Kkd) — (1 +Ku) _ VTS (Ku — Kd)

(1 +Kdy) = VU,_,. (1 + Kup).Kd,. T

_ (Kug—Kd) _ VTS, (Ku —Kdo)

(1+Kd) ~ VU._,.(1+ Kup).Kd,.T
VTS,. (1 + Kd,)
VU, (1 +Ku).Kd. T~

1

-1 (A35)

Since (1 + Kdt), (1 + Kut), and Kdt.T must be positive, the only cases for which an
optimal capital structure would not exist are those where the quotient (VTSt / VUt-1) is
negative. This situation may be observed in firms with a limited duration such as
concessions, in which the exploited asset (a highway, for instance) must be transferred to a
third party (a local municipality, for instance) in optimal conditions at the end of the

concession and, thus, demand an important investment in the last period. This could cause
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the FCF of that period to be negative and, consequently, also VU would be negative in the

previous period.

Up to this point, an expression for the optimal debt level (A34) has been found, but

it is still lacked a formula for the optimal leverage. In consequence, the following

derivation presents an expression for the leverage D% in terms of Dy, Kd;, VU, Ku; and

VTSt:

VLt—l = Et—l + Dt—l = VUt—l + VTSt_l
VTS, + TS,

1+wy,
TS, = Dy_;.Kd. T

(Ku; — Kdy). Dy,

e = Kt Ty T oD,
_ Kug. (VUr_y — Dy_y) + (Kug — Kd). D4
t VUi_q — Dy
Kug. VU,_; — Ku,. De_; + Ku,. Dy_; — Kd,. Dy,
£ VUi, — Dy,
_ VU,_;.Ku, — D_y.Kd,
Ve= VU, - D,
D;_
D% = VLtt_ll
VTS, = VTS, + Dy_;.Kd,. T
1+ VUi Kug =Dy Kd;
VUi—1 =Dy
VTS, = VTS, + D;_;.Kd,. T

VU, - D,
_ (VUt—l - Dt—l)' (VTSt + Dt—l' Kdt. T)

(A1)
(A4)
(A2)

(A5)

(A36)

(A37)

(A38) = (A36) in (A4)

(A39) (A38) in (A37)

VTS, =

17 VU, (1 +Kup) — D_y. (1 4+ Kdy)

Diy
D%
VU + (VUt_1 - Dt—l)' (VTSt + Dt—l' Kdt. T)
=1 VUt—l' (1 + Kut) - Dt—l' (1 + Kdt)
Di_1.[VU,_1. (1 + Kup) — D_. (1 + Kdp)]

D%

B VUt—l' [VUt_1. (1 + Kut) - Dt—l' (1 + Kdt)] + (VUt_1 - Dt—l)' (VTSt + Dt—l' Kdt. T)

(A40)

In consequence, by means of (A40) and using Doprs.1 as the value for Dy, it is

possible to find the optimal value for the leverage. Now, as a final step, we proceed to

derive an expression for Dy as a function of leverage, a result that can be used to plot VL

as a function of leverage:
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Di—1. [VU;_;. (1 + Kuy) — De_y. (1 4 Kd)]
= D%.VU,_;.[VU,_;. (1 + Ku) — D_y. (1 + Kdy)]
+ D%. (VU,_; — Dy_y). (VTS + D;_;.Kd,.T)
Dy—1.VU,_;. (1 + Ku,) — DZ_,. (1 + Kd,)
= D%.VU2_,.(1 + Ku,) — D%.VU,_,.D,_,. (1 + Kd,)
+ (D%.VU,_; — D%.D,_,). (VTS + D;_;.Kd,.T)
Di—1.VU,_;. (1 + Kup) — DZ_,. (1 + Kd,)
= D%.VUZ,.(1 + Ku,) — D%.VU,_,.D,_;. (1 + Kd,) + D%.VU,_;.VTS,
+ D%.VU;_;.D_;. Kd. T — D%. Dy_;. VTS, — D%. DZ ;. Kd,. T
—D2_,.(1 + Kd, — D%.Kd,.T)
+Dy_y. [VU,_;. (1 + Kup) + D%.VU,_;. (1 + Kd,) — D%. VU,_.Kd,. T + D%. VTS,]
— D%.VUZ ;. (1 + Ku,) — D%.VU,_;. VTS, = 0
—DZ,.[1 + Kd,. (1 — D%.T)] + D;_1.{VU,_;. (1 4+ Ku,) 4+ D%. VU,_,.[1 + Kd,. (1 — T)] + D%. VTS,}
—D%.VU,_;.[VU,_;. (1 + Ku,) + VTS, ] =0
DZ,.[1 4+ Kd,. (1 — D%.T)] — Dy_;. {VU,_;. (1 + Ku,) + D%.VU,_;.[1 + Kd. (1 — T)] + D%. VTS,}
+D%.VU,_;.[VU,_1.(1 + Ku,) + VTS, ] =0 (A41)
Equation (A41) has a quadratic form and, thus, can be solved by means of the

general formula

-B++vB?—-4.A.C
D, = (A23)
2.A
And the following values for A,B and C:
A=1+Kd.(1-D%.T) (A42)
B = —VU,_;.(1 + Ku,) — D%. {VU,_;.[1 + Kd,. (1 — T)] + VTS,} (A43)
C = D%.VU,_;.[VU,_;.(1 + Ku,) + VTS,] (A44)

The full resulting expression is not shown in this document due to length

considerations, but its numerical application is very straightforward.

32



Appendix B

Derivation of the general formula for the optimal capital structure for perpetuities
with constant growth when vy, = Ke,

The problem of deriving a general recursive formula for finding the optimal capital
structure in every period of a valuation process with a finite number of them was solved in
Appendix A. Thus, Appendix B focuses in solving the same problem for perpetuities, a
process that is very similar to that presented in the previous appendix. Hence, the

mentioned derivation starts from the following basic tenets of finance for perpetuities:

CFE,
t-1 = Ke,— g (B1)
VU, = (B2)
Kui—g
VTS, = TS, (B3)
v~ 8
VL; = E;_q + Dy = VU,_; + VTS,_, (B4)
Ei;+Diy = Kifitg + Wthf g (B5) = (B2), (B3) in (B4)
TS, = D,_;.Kd,. T (A2)
CFE, = FCF, 4+ D, — D,_; — D,_;Kd,. (1 — T) (B6)
D¢ =D 4.(1+g) (B7)
D —Dy_; = Dy_1.8 (B8)
CFE, = FCF, 4+ D,_;.g — D;_.Kd; + D,_;.Kd,.T (B9) = (B8) in (B6)
CFE, = FCF, — D,_;. (Kd, — g) + TS, (B10) = (B6) in (B9)
v, = Ke, (B11)
CFE. | Dy = VU,_; + TS (B12) = (B1), (B2), (B3) and (B11) in (B4)
V.~ 8 v, — 8
CLLE V. (B13)
V.~ 8
FCF = Doy (KA =) + TS, — TS, _ VU, — Dr4 (B14) = (B10) in (B13)
v~ 8
y, = FCF; — D;_;. (Kd; — g) tg
VU1 = Dy
FCFy —D;_;.(Kd; —g) + 8. (VU — D_4)
Ve VU1 - D¢
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— FCFt - Dt—l' Kdt + Dt—l' g + VUt—l' g - Dt—l' g

Ve VUi = Di-q
_ FCF,— Dy_;.Kd, + VU,_.¢
YT TV D
FCF. (Ku, — g) FCF,
v _W_ Dt_l.Kdt-FKut_g.g
¢ VUi—1 =Dy
FCF,. E(Kut -g+g D,_,.Kd,
g, = U — 8
t VUi—1 = D¢y
FcKFt. (Ku) D,_..Kd,
__su—g
Ve = TV, - Doy
VUt—l' Kut - Dt—l' Kdt
= B16
Vo= VO, - Dy (B16)
_ VUt—l' Kut - Kut. Dt—l + Kut. Dt—l - Dt—l' Kdt
Ve VUi = Dy
v = Ku;. (VU;_; — D¢_4) + (Kug — Kdy). Dy_4
‘ VUi = Dy
(Ku; — Kd,).D;_4
=K B17
v, u + VU, -D._, ( )
Using the chain rule of differential calculus, we have:
dVL._ dVL,_; dVTS._; d
t—1 t—1 -1 dY, (B18)

dDe_;  dVTS,_;  dy, 'dDi,
We now find expressions for every individual derivative in then LHS of (B18):

dVTS.; d TS, _ d Dyy.Kd.T

dy, dy,y,—g dy, v,—g

d d
dVTS,; (v, — g).d—%Dt_l. Kd. T — Dy_,.Kd,. T'd_\vt (v,—8)

dwt (\Vt - g)z
dD._ dy
dvTS,_; (v, —8)-Kd..T. d\f/tl — D_;.Kd,. T.d—wz
dy, (v,—g)°
dD,_ dy
dVTS,.; (v, — 8)-Kd..T. d\lt/tl —D_;.Kd,. T.d—wt
dy, (v, - 8)°
dD,_
avrs, , T [("’t ~8) d, D“] (B19)
dy, (v,—g)°
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dD_; < dy >_1
dys dD¢_q

dD¢_, ( dy )_1 _ (VU;_; — D4)?
dll}t th—l VUt—l' (Kut - Kdt)

_(\Vt - g)- (VU_; — D¢y)?
dVTSt_l _ VUt—I' (Kut - Kdt)

dy, (Wt - g)z
_(\I/t - g). (VU1 = D¢—1)? = Di—y. VU;_y. (Ku, — Kdy)

(A11)

(B20) = (A7) in (A11)

Kd,.T. — Dy

(B21) = (B20) in (B19)

dVTSt—l Kdt' T' | VUt—l' (Kut - Kdt)
= 2
dy, (v.—8)
dVTS,_; Kd.T.[(y, —g). (VU_; = D;_1)* = D,_y. VU,_. (Ku, — Kd,)] (B22)
= 2
dy, VU,_;. (Ku, — Kdy). (v, — 8)
dVLey _ dVU.;  dVTS., (B23)
dVTS;_.; dVTS,.; dVTS,_;
dVL_,
vrs —0+1=1 (B24)
dVL._4 e Kd;. T. [(Wt - g)- (VUp—q = De21)? = D—g. VUq. (Kuy — Kdt)] [VUt—l' (Kue — Kdy)
th—1 VUt_l- (Kut _ Kdt) (\Vt _ g)Z (VUt—l - Dt—l)z

(B25) = (B24),(B22), (A7) in (B18)
Now we equal the derivative of the levered value of the firm with respect to the debt

level to zero in order to find the optimum:

dD,_,
Kd,.T. [(‘I’t —g). (VU - DOPT,t—l)Z — Dopr-1- VUi-1. (Ku — Kdt)] VU,_;. (Ku, —Kdy) | 0
- VU,_;. (Ku, — Kdy). (y, — g)z . (VU — DOPT,t—1)2 -
(B25)

First, we look for solutions stemming from the first factor of the LHS of (B25):

Kde. T (v, = 8)- (VUe1 = Dopre1)” = Dopre-1. VUi (Ku — Kdp)| .
VU, (Ku, — Kdy). (v, — g)°

(Kug — Kdy). Dopre-1
VUi—1 = D¢y

2
[Kut + gl- (VUt—l - DOPT,t—l) — Dopre—1- VUi—g. (Ku; —Kd) =0

(Kug — 8). (VU—y — Dopre—1) + (Kug — Kdp). Dopre—1
VUt—l - DOPT,t—l

— Doprt—1- VUio1. (Kuy — Kdp) = 0

] . (VUt—l - DOPT,t—1)2
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[VU,_;. (Ku, — g) + (Ku, — Kd; — Kuy + 8). Dopre—1
VUi_1 — Doprt-1
=0
_FCFt — (Kd; — g). Doprt-1
VUi—1 — Doprt-1

2
. (VUt—l - DOPT,t—l) — Dopr,t-1- VUi-1- (Ku; — Kd,)

2
. (VUt—l - DOPT,t—l) — Doprt—1- VUioq- (Kug — Kdy) = 0

[FCF, — (Kd; — )-Doprt—1]- (VUt—1 — Doprt-1) — Doprt-1. VUi—q. (Ku, — Kd) = 0

VU;_;. [FCF, — (Kd; — ). Doprt—1] — Doprt—1. [FCFe — (Kd; — 8). Dopr,t—1] — Dopre-1- VUi—1. (Ku, — Kdy)
=0

VU;_;. [FCF, — (Kd; — g)- Dopr—1] — Doprt—1. [FCF, — (Kd; — 8). Dt_1] — Doprt—1. VU;_1. (Ku, — Kd,)
=0

VU;_;.FCF, — VU,_;. (Kd; — ). Dopr,t—1 — Doprt—1. FCF¢ + (Kd; — 8). D3pr_1
— Dopr-1-VU_q. (Ku, — Kdp) = 0

(Kd; — 8. D(Z)PT,t—l — VU;—;. (Kd; — 8). Dopr,t-1 — Dopr,e-1- VUi-1. (Kug — Kdy) — Dopre—s- FCFy
+ VU ;.FCF, =0

(Kd; — ). Ddpr—1 — [VUi_y. (Kd; — ) + VU,_;. (Ku, — Kdy) + FCF,]. Doprc_q + VU;_;.FCF, = 0

(Kd; — g). Ddpr_1 — {VU_4[Kd; — g + Ku; — Kd] + FCF}. Dopr_q + VU;_1. FCF, = 0

(Kd; — g). D3pre—1 — [VUi_y1. (Kuy — g) + FCF]. Dopr_1 + VU_1. FCF = 0

(Kd; — g). D3pr—1 — [FCF; + FCF]. Dopr_; + VU_;.FCF, = 0

(Kd; — g).D3pr_1 — 2.FCF. Dopr_1 + VU,_1. FCF, = 0

(Kd; — g)

FCF, .Dpr1 — 2.Dopre—1 + VUi =0 (B26)

Equation (B26) has a quadratic form with Dopr.; as the unknown; it is now solved

using the corresponding general formula:

_ (Kd; — g)

A="%cF (B27)
t
B=-2 (B28)
C=VU_, (B29)
-B+VBZ —4.A.C
Dopri-1 = > A (A23)
2+ J4 — 4. —VUt-l'F(C}édt —8)
Doprt-1 = K —g) : (B30) = (B27), (B28), (B29) in (A23)
2R CF,
1+ [1- VU;_y. (Kd¢ — g)
= FCF,
Dopr-1 = Kd.—g)
FCF,
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FCF, FCF.. (Kd; — g)
= |14 [1- =
Dopr,e-1 (Kd; — g) ll - \]1 FCF,. (Ku; — g) o

_ (Ku, — g) (Kd; — g)
Dopre-1 = VUt—1-m- [ * 1 Ku—-p (B32)

The observation made in Appendix A regarding the fact that when Ke=y, the debt
level must be inferior to the unlevered value of the company, is now used to find whether

the sign behind the radical should be positive or negative:

Doprt-1

VU, 1 (B33)
Doprt-1 (Ku; — g) (Kd; — g)

VUi, (Kd—g) I o B (Ku, — g)‘ (B34)
(Ku; — g) (Kd; — @) B _
(Kd;—g)° 1+ (Ku, — g)‘ <1 (B35) = (B34) in (B33)

(Kd¢ —g)  (Kd,—g)

S R G R Ty (536
Since Ku; should be greater than Kd;,
"
1+ [1- 8;32 - g Eiiz - 3 <1 (B38) = (B37) and (B36)
P
1- ?éiz — 3 <0 (B39)

Since the expression under the radical should be positive since Kuz>Kd;, inequality

(B39) only holds if the sign before the radical is negative:

~
=~
o

(ol

—g)

— (1 -

<0 (B39a)

=

c
(ad
)
—

In consequence, the general formula for the optimal debt value in a perpetuity with

constant growth is:
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(Ku; — g) L (Kd¢ — g)

D =V —_—. - _
orre-1 = Vet g — gy (Ku, — g)

(B40)
In the particular case of a non-growing perpetuity, g=0 and (B40) collapses to

Ku, Kd,
Dopri-1 = VU¢_1-K—dt- 1- [1- Ku, (B41a)

Since in the mentioned case VU, =FCFy/Ku,, expression (B41a) can be presented in

the following equivalent form (which is the one derived by Tham et al, 2010):

FCF, / Kd
Dopre_1 = KTI:' 1- |1- K—u: (B41b)

In the next step, expressions for D% as a function of any value of Dy.; in the context
p, €Xp y

of growing perpetuities are derived:

Diq Dy
D% = = B42
Di_
D% = L (B43) = (B3), (A2) in (B42)
Ty -8
Dy .
D% = (B44) = (B16) in (B43)
t=1 VUt—l' Kut - Dt—l' Kdt _
VUi_1 — D
Dy
0 =
D% VU._. + D;_;.Kd..T
=17 VUy_;.Kug — D_y. Kdy — (VU,_; — D¢_4).8
VU;_; =D
D¢y
0 =
-1 VUt—l' Kut - Dt—l' Kdt - VUt—l' g + Dt—l' g
VUi = Di—q
D¢y
0 =
D% VU._. + D;_;.Kd.. T
1T VU (Kue — g) — Di_;. (Kd; — g)
VUi_1 — D
D¢y
D% =
0 VU + Dt—l' Kdt. T. (VUt—l - Dt—l)
=1 VU ;. (Kug — g) — De—y. (Kd; — 8)
D._
D% t-1

~ VUi [VUry. (Kuc— ) — Dyy. (Kde — )] + Dy Kdp. T. (VUy_y — D)
VU;_;. (Kug — g) — D¢—q. (Kd; — g)
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Di—1.[VU¢—1. (Kug — g) — Dy—y. (Kd; — g)]

D = VU, VU (Ku, — 8) — Doy (Kdy — )] + Dy Kdy. T. (VU — D)
DY% = Di_1.[VU_q. (Kuy — g) — Dy—q. (Kd, — g)]
VUZ . (Ku; — g) — VU;_y.Dy_y. (Kd; — g) + VU;_y. Dy Kdp. T — DZ_ 1. Kdy. T
DY = Di_1. [VUi_1. (Kug — g) — Dy (Kd; — g)]
VUZ,.(Ku; — g) — VU;_4.D¢_;. (Kd; — g — Kd(. T) — DZ_,.Kd;. T
D% Di_1.[VU;_;. (Ku; — g) — D;_¢. (Kd; — g)] (B45a)

~ VUZ,.(Ku,—g) — VU,_{.Dy_;.[Kd,. (1 — T) — g] — D? ;. Kd,. T

Or, equivalently,

De—y. [VU_y. (Kug — g) — De—q. (Kd¢ — g)] .
D% = B45b) = (B2) in (B45
A = YU, FCF, — VU, Dy [Kde. (1= T) — g] — D2, Kdp. T (B45b) = (B2) in (B452)

Di_1.[VUi_1. (Kuy — g) — Dy_¢. (Kd, —
DY% = t-1- [VU_1. (Kug — g) -1 ( tzg)] (B45¢)
VU,_1.{FCF,— D;_;.[Kd,.(1 —T) — g]} — D{_;.Kd,. T

For non-growing perpetuities, g=0; thus,

Dt—l' [VUt_1. Kut - Dt—l' Kdt]

D% = 77 2
VU2 ,.Ku, — VU,_;.D_;.Kd,.(1 — T) — D% ,.Kd,. T

(B46a)

Or equivalently,

D;_;.[FCF, — D,_;.Kd
DY% = t-1- [FCFy t—1-Kdi] _ (B46b)
VU,_,.FCF, — VU,_;.D_;.Kd,. (1 — T) — DZ_,.Kd,. T

D;_1.|FCF, — D¢_4.Kd
D% = t-1- [ t t-1 o] ~ (B46¢)
VUt—l' [FCFt - Dt—l' Kdt. (1 - T)] - Dt—l' Kdt. T

As was mentioned previously in Appendix A, the numerical application of these
formulas with D..1=Dop .1 make possible the calculation of the optimal leverage. Finally, a
plot of VL., as a function of leverage is presented in the main part of this document, in

which the following formulation is used:

Di—y. [VU;_;. (Kuy — g) — Di—y. (Kd; — g)]
VUtZ_l. (Kut - g) - VUt—l' Dt—l' [Kdt. (1 - T) - g] - D%—l' Kdt. T

D%. {VUZ_,.(Ku; — g) — VU;_;.D,_;. [Kd. (1 = T) — g] — D2_,.Kd,. T}
= D¢—y. [VU_q. (Kuy — 8) — Dq. (Kd; — 8)]

D2 ,.[D%. Kd,. T — (Kd; — £)] + Dy_y. {VU;_y. (Ku; — £) + VU,_;.D%. [Kd,. (1 — T) — g]}
—VUZ,.D%. (Ku;—g) =0

DZ_,.[D%. Kd,. T — (Kd; — g)] + Dy_;.VU;_;. [Ku; — g + D%. Kd,. (1 — T) — D%. g]
—VUZ;.D%. (Ku, — g) =0

D% =
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, [D%Kd.T- (Kd;,—g)]
D-1- VU
t-1

+ Dt—l' [Kllt - g. (1 + D%) + D%. Kdt. (1 - T)] - VUt—l' D%. (Kllt - g)

=0 (B47)
Equation (B47) has a quadratic form with D as the unknown variable and, thus,

can be solved by means of the general formula

-B++VB?2—-4.A.C
Dy y = (A23)
2.A

with the values for A, B and C presented next:

_ [D% Kd,. T — (Kd, — g)]

= W, (B48)
B = [Ku, — g. (1 + D%) + D%.Kd,. (1 — T)] (B49)
C = —VU,_;.D%. (Ku, — g) (B50)

The full resulting expression for Dy is not shown in this document due to length

considerations, but its numerical application is very straightforward.
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